FULL PAPER

Heterobimetallorganische 1,2-(*N*,*N*-Dimethylaminomethyl)ferrocenyl-Derivate des vier- und zweiwertigen Zinns: Synthesen, Charakteristika und Kristallstrukturen

Klaus Jacob*, Naka Seidel und Frank Voigt

Merseburg, Martin-Luther-Universität Halle-Wittenberg, Institut für Anorganische Chemie

Axel Fischer

Magdeburg, Otto-von-Guericke-Universität, Chemisches Institut

Claus Pietzsch

Freiberg, Technische Universität Bergakademie, Institut für Angewandte Physik

Jaroslav Holecek und Antonin Lycka

Pardubice/Tschechische Republik, Universität, Institut für Allgemeine und Anorganische Chemie

Marco Fontani, Emanuela Grigiotti und Piero Zanello

Siena/Italien, Dipartimento di Chimica dell' Universita di Siena

Heterobimetallic 1,2-(*N*,*N*-Dimethylaminomethyl)ferrocenyl Derivatives of the Four and Two Valued Tin: Syntheses, Characteristics and Crystal Structures

Eingegangen am 07. März bzw. 22. Mai 2000

Keywords: Cyclic voltammetry, Moessbauer spectroscopy, Tin, Ferrocenes, Heterobimetallics

Abstract. SnCl₄ reacts with [1,2-(N,N-dimethylamino-methyl)ferrocenyl]lithium (FcNLi) under formation of the organo tin compounds of the four valued tin (FcN)_nSnCl_{4-n} [n = 1(1), 2(2), 3(3), 4(4)]. The heterobimetallic chelate complex bis[1,2-(N,N-\text{dimethylaminomethyl})ferrocenyl]tin(II) (FcN)₂Sn (5) is formed at the reaction of SnCl₂ with two equi-

Organozinn(IV)-Verbindungen vermögen infolge der schwach polaren Sn–C-σ-Bindungen gegenüber Übergangsmetallchloriden mit dem Metallatom höherer Oxidationsstufe als wenig reduktiv wirkende Organylgruppenüberträger bei Metathesereaktionen zu fungieren. So erfolgt z.B. durch Reaktion von WCl₆ mit (C₂H₅)₄Sn die Bildung des Organowolfram(VI)-Derivates (C_2H_5) WCl₅ [1, 2]. Diese Beobachtung veranlaßte uns, 1,2-(N,N-Dimethylaminomethyl)ferrocenyl-Verbindungen des vierwertigen Zinns der Formel $(FcN)_n SnCl_{4-n}$ (n = 1-4) darzustellen und die unbekannten Kristallstrukturen der Verbindungen (FcN)SnCl₃ (1), (FcN)₃SnCl (3), (FcN)₄Sn (4) aufzuklären, um diese Organozinn(IV)-Derivate als FcN-Gruppenüberträger zur Synthese heterobimetallischer 1,2-(N,N-Dimethylaminomethyl)ferrocenylübergangsmetall-Derivate ausgewählter Übergangselemente unter Erhalt ihrer Oxidationsstufen verwenden zu können. Es erschien ferner die Frage interessant, ob der zur Chelatbildung befähigte großvolumige FcN-Ligand auch die Bildung heterobimetallischer zinnorganischer Innerkomplexe ermöglicht.

valents of FcNLi. The heterobimetallic tin compounds 1-5 were characterized by ¹H NMR-, ¹³C-NMR and mass spectroscopy, single crystal x-ray analyses (1, 3, 4, 5), ⁵⁷Fe-Moessbauer spectroscopy (1, 3, 4, 5), respectively cyclic voltammetry.

Bisher sind 1,2-(*N*,*N*-Dimethylaminomethyl)ferrocenyl-Verbindungen des vierwertigen Zinns sowohl der Formeln (FcN)SnR₃ (R = CH₃ [3], C₄H₉, C₆H₅ [4], C₂H₅ [5], C₆H₅CH₂ [6] bzw. (FcN)₂SnR₂ (R = CH₃ [7], C₆H₅, *t*-C₄H₉; R = X = Cl [6, 8]) als auch (FcN)Sn(Cl)R₂ (R = CH₃, C₆H₅ [3, 9]) beschrieben worden.

Von Interesse war in diesem Zusammenhang auch die Frage nach der Existenz des heterobimetallischen Stannylens Bis-[1,2-(*N*,*N*-dimethylaminomethyl)ferrocenyl] Zinn (FcN)₂Sn als zinn(II)organischem Donormolekül, zumal großvolumige Organogruppen zur kinetischen Stabilisierung der Sn–C- σ -Bindungen beitragen und so beispielsweise die Bildung stabiler Stannylene R₂Sn (R= 2,4,6-(CF₃)₃C₆H₂ [10], CH(SiMe₃)₂ [11]) ermöglichen können. Organylreste, die durch die Anwesenheit eines Donoratomes, z.B. eines *N*-Atomes, außerdem zur metallorganischen Innerkomplexbildung befähigt sind, können durch zusätzliche M \leftarrow *N*-Wechselwirkungen (Chelateffekt) die kinetische Stabilität solcher Organometall-Derivate erhöhen. So konnten z.B. die zinn(II)organischen Chelatkomplexe R₂Sn (R= 2-[1-(Dimethylamino)ethyl]phenyl [12]; 2-[1-(Dimethylamino)methyl] phenyl, 8-(Dimethylamino)-1-naphthyl [13]) beschrieben werden.

Die großvolumige und zur Chelatbildung geeignete 1,2-(N,N-Dimethylaminomethyl)ferrocenyl-Gruppe (FcN) sollte somit auch die Existenz des heterobimetallischen Stannylens (FcN)₂Sn ermöglichen, zumal dieses bereits *in situ* als Edukt zur Synthese des dimeren Bis[1,2-(N,N-dimethylaminomethyl)ferrocenyl]zinn-dihydroxids [(FcN)₂Sn(OH)₂]₂ · 2CHCl₃diente [14].

 $\label{eq:constraint} \begin{array}{l} (FcN)Li = [1,2-(N,N-Dimethylaminomethyl)ferrocenyl]-Lithium \\ \{C,N-[Fe \ (\eta^5-C_5H_5)(\eta^5-C_5H_3)(CH_2NMe_2)-2)]\}Li \end{array}$

Ergebnisse und Diskussion

Reaktionen von $SnCl_4$ mit (FcN)Li führen in Diethylether als Lösungsmittel gemäß Gl. (1) zu Heterobimetallorganika des vierwertigen Zinns der Formel (FcN)_n $SnCl_{4-n}$ [n = 1 (1), 2 (2), 3 (3), 4 (4)].

$$SnCl_4 + n(FcN)Li \longrightarrow (FcN)_nSnCl_{4-n} + nLiCl$$
 (1)

Die orangeroten kristallinen Organozinn(IV)-Verbindungen sind luft- bzw. feuchtigkeitsempfindlich und löslich in *n*-Pentan, Toluol, Tetrahydrofuran und Diethylether.

Die Bildung des kristallinen heterobimetallischen Stannylens (FcN)₂Sn (5) erfolgt gemäß Gl. (2) durch Umsetzung von SnCl₂ mit (FcN)Li in Tetrahydrofuran als Lösungsmittel.

$$SnCl_2 + 2(FcN)Li \longrightarrow (FcN)_2Sn(5) + 2LiCl$$
 (2)

Das gelbbraune Stannylen **5** ist luft- und feuchtigkeitsempfindlich, löslich in Ethern bzw. Kohlenwasserstoffen.

In den Massenspektren der Organozinn-Derivate 1– **5** (s. experimenteller Teil) sind in allen Fällen neben den jeweiligen Molekülionenpeaks weitere zinnhaltige Fragmentionenpeaks beobachtbar. Das Fragmentierungsverhalten des 1,2-(N,N-Dimethylaminomethyl) ferrocenyl-Restes (FcN) bzw. von Dimethylaminomethylferrocen (FcNH) befindet sich ebenso in Übereinstimmung mit diesbezüglichen Literaturangaben [15], wie jenes des (FcN)₂SnCl₂ [6].

Kristallstrukturen

Von den Organozinn-Verbindungen (FcN)SnCl₃ (1), (FcN)₃SnCl (3), (FcN)₄Sn (4), (FcN)₂Sn (5) konnten Einkristallröntgenstrukturanalysen angefertigt werden, deren kristallographischen Parameter in Tab. 1 enthalten sind.

So kristallisiert 1 mit 8 Molekülen in der orthorhombischen Raumgruppe Pbca und besitzt die in Abb. 1 aufgezeigte Molekülstruktur. Das Zinnatom ist verzerrt trigonal-bipyramidal koordiniert. Die äquatorialen Positionen werden von den Atomen C1, Cl1 und C3 besetzt, während N und Cl2 apikal konfiguriert sind. Dies erklärt den mit 238,6(4) pm etwas größeren Bindungsabstand Sn–Cl2(ap) gegenüber 233,4(7) pm [Sn– Cl1(eq)] bzw. 234,4(6) pm [Sn–Cl 3 (eq)]. Der äquatoriale Bindungswinkel Cl1–Sn–Cl3 ist mit 105,60(6)° der kleinste und deutet auf den hohen Raumbedarf des Ferrocenylliganden hin. Der Bindungswinkel Cl2–Sn–N ist mit 176,41(5)° nahezu linear und zeigt eine nur geringe Spannung im Chelatring an. Die Cyclopentadienylringe sind ekliptisch angeordnet.

Abb. 1 Das Molekül von 1 im Kristall. Ausgewählte Bindungslängen [pm] und -winkel [°]: Sn–C1 208,2(4), Sn–Cl1 233,4(7), Sn–Cl2 238,6(4), Sn–Cl3 234,4(6), Sn–N 242,9(5); C1–Sn–Cl1 131,6(1), C1–Sn–Cl2 100,8(2), C1–Sn–Cl3 118,2(2), C1–Sn–N 75,6(2), N–C11–C2 108,9(2), C11–N–Sn 103,0(2).

Verbindung **3** kristallisiert mit 8 Molekülen in der monoklinen Raumgruppe C2/c. Das Zinnatom ist verzerrt trigonal bipyramidal koordiniert. Die Molekülstruktur wird durch Abb. 2 wiedergegeben. Die Beträge der äquatorialen Winkel am Zinnatom reichen von 111,81(9)° [C1–Sn–C11] bis 123,68(9)° [C1–Sn–C21]. Der von den apikalen Positionen am Zinnatom gebildete Winkel beträgt 167,2(2)°; der Abstand Sn–N3 ist mit 277,5(2) pm deutlich gegenüber dem in **1** vergrößert und

FULL PAPER

Verbindung	1	3	4	5
Formel	C ₁₃ H ₁₆ Cl ₃ FeNSn	$\mathrm{C}_{_{39}}\mathrm{H}_{_{48}}\mathrm{ClFe}_{_{3}}\mathrm{N}_{_{3}}\mathrm{Sn}$	$\substack{ {\rm C}_{52}{\rm H}_{70}{\rm Fe}_4{\rm N}_4{\rm Sn} \\ {\rm 0,5}~{\rm C}_5{\rm H}_{12} } {\rm \cdot}$	$C_{26}H_{32}Fe_{2}N_{2}Sn$
M _r	467,16	880,49	1129,28	602,93
Habitus	gelbes Prisma	oranges Prisma	oranges Prisma	gelbbraunes Plätteben
Kristallgröße (mm)	$0.31 \times 0.16 \times 0.08$	$0.70 \times 0.50 \times 0.40$	$0.32 \times 0.25 \times 0.16$	$0.37 \times 0.24 \times 0.11$
Kristallsystem	orthorhombisch	monoklin	triklin	monoklin
Raumgruppe	Phca	$C^{2/c}$	P-1	P2 /n
Gitterkonstanten:	1 beu	02/0	1 1	$12_1/11$
a (pm)	1387(4)	2979 2(1)	1237 9(2)	1308 5(1)
h (pm)	1120(3)	1155 4(1)	13700(2)	10927(1)
c (pm)	2042(7)	2119.5(1)	1666.7(2)	1822.7(1)
$\alpha(\circ)$	20.2(/)	2117,0(1)	82.47(1)	1022, (1)
$\hat{\boldsymbol{\beta}}(\boldsymbol{\circ})$		96.81(1)	76.10(1)	109.21(1)
$\gamma(^{\circ})$		> 0,01(1)	64.23(1)	10,,=1(1)
$V (nm^3)$	3.172	7.2439	2.4700	2.4608
Z	8	8	2	4
D_{v} (Mg m ⁻³)	1.956	1.615	1.518	1.627
μ (mm ⁻¹)	2,98	1,97	1,69	2,19
F(000)	1824	3584	1170	1216
T (°C)	-130	-100	-130	-100
2 <i>θ</i>	56.6	56,7	57,2	51,9
Zahl der Reflexe:		,	,	,
gemessen	22320	23711	26917	13609
unabhängig	3937	8915	12487	4766
R.	0,067	0,044	0,049	0,028
Parameter	174	430	578	306
wR (F ² , alle Refl.)	0,044	0,086	0,096	0,055
$R(F, > 4 \sigma(F))$	0,025	0,034	0,038	0,025
S	0,89	1,05	0,96	1,07
max. $\Delta \sigma$	0,001	0,002	0,001	0,001
max. $\Delta \rho$ (e nm ⁻³)	605	2178	1488	415

Tab. 1 Kristallographische Daten für die Verbindungen 1, 3, 4 und 5

Abb. 2 Das Molekül von 3 im Kristall. Die Wasserstoffatome sind wegen besserer Übersichtlichkeit weggelassen. Ausgewählte Bindungslängen [pm] und -winkel [°]: Sn–C1 212,9(2), C11 213.6(2), Sn–C21 210,5(2), Sn–C1 242,4(1), Sn–N3 277,5(2); C1–Sn–Cl 100,36(6), C11–Sn–Cl 102,68(6), C21–Sn–Cl 96.04(6), C1–Sn–C11 111,81(9), C11–Sn–C21 116,34(9), C1–Sn–C21 123,68(9), Cl–Sn–N3 167,2(2), N1– C31–C2 112,4(2), N2–C34–C12 113,4(2), N3–C37–C22 111,7(2).

deutet auf eine schwache Sn \leftarrow N-Wechselwirkung hin. Die anderen Stickstoffatome bilden mit Abständen über 400 pm keine koordinativen Sn \leftarrow N-Bindungen. Die Bindungsabstände Zinn-(*ipso*)C(ferrocenyl) sind mit Sn–C1 212,9(2), C11 213,6(2) und Sn–C21 210,5(2) pm vermutlich aufgrund des höheren sterischen Anspruchs dreier Ferrocenylliganden vergrößert gegenüber Sn–C1 208,2(4) in **1**. Alle Cyclopentadienylringe zeigen nur geringe Abweichungen von einer ideal ekliptischen Anordnung.

Das homoleptische **4** kristallisiert mit 2 Molekülen und einem halben Molekül Pentan in der triklinen Raumgruppe P-1 und weist die mit Abb. 3 angegebene Molekülstruktur auf. Das Zinnatom ist verzerrt tetraedrisch koordiniert. Aufgrund vier gleicher Liganden ist die Verzerrung gering; die Winkel am Zinnatom betragen von 104,8(2) [C1'–Sn–C1"] bis 111,2(2)° [C1'–Sn–C1#]. Die Zinn–Kohlenstoff-Bindungsabstände sind aufgrund des gegenüber **1** und **3** erhöhten sterischen Anspruchs größer: Sn–C1 213,8(3), C1' 215,3(3), Sn–C1" 215,2(3), Sn–C1# 213,4(3) pm (# = Zusatzzeichen, das allen Atomen des vierten FcN-Liganden am Zinnatom zugewiesen wurde, da alle FcN-Gruppen zwar nicht symmetrieverwandt, aber von der Konnektivität her gleich

Abb. 3 Das Molekül von **4** im Kristall. Die Wasserstoffatome sind wegen besserer Übersichtlichkeit weggelassen. Nur die ekliptische Lage des einen Cyclopentadienylliganden (C6'A-C10A) ist abgebildet.

Ausgewählte Bindungslängen [pm] und -winkel [°]: Sn–C1 213,8(3), C1' 215,3(3), Sn–C1" 215,2(3); Sn–C1# 213,4(3), C1–Sn–C1' 110,7(2), C1–Sn–C1" 110,8(2), C1–Sn–C1# 109,5(2), C1'–Sn–C1" 104,8(2), C1'–Sn–C1# 111,2(2), C1"– Sn–C1# 109,7(2). [# s. S. 3]

sind). Alle Stickstoffatome sind vom Zinnatom weiter entfernt als 400 pm; etwaige dative Stickstoff–Zinn-Bindungen können daher ausgeschlossen werden. Auch in 4 sind alle Cyclopentadienylringe ekliptisch angeordnet.

Das heterobimetallische Stannylen 5, dessen Molekülstruktur mit Abb. 4 aufgezeigt wird, kristallisiert mit 4 Molekülen in der monoklinen Raumgruppe P2(1)/n. Im Gegensatz zum wenig verzerrt tetraedrisch koordinierten, unchelatisierten Zinnatom in 4, besitzt jenes im Stannylen 5 die für Organozinn(II)-Derivate mit C,N-Chelatkoordination oft typische [13], verzerrt trigonalbipyramidale Koordinationsgeometrie. Die Kohlenstoff-Atome C1 und C1' [C1'-Sn-C1 98,16(9)°] sowie das im Gegensatz zu 4 vorhandene freie Elektronenpaar, besetzen dabei in 5 die äquatorialen Positionen, während die chelatisierenden Stickstoffatome [N-Sn-N' 160,48(6)°] apikal positioniert vorliegen. Die Zinn-Stickstoffabstände zeigen mit 258,5(2) pm [Sn-N] bzw. 262,4(2) pm [Sn-N'] deutlich das Vorliegen von koordinativen $N \rightarrow Sn$ -Bindungen in 5 an, während dagegen der kürzeste Sn-N-Abstand in 4 immerhin 442 pm beträgt und damit eine koordinative Wechselwirkung in 4 ausgeschlossen werden kann.

Somit handelt es sich bei 1 bzw. 5 um heterobimetallische Organozinn-Verbindungen, in denen die jeweili-

Abb. 4 Das Molekül von 5 im Kristall. Die Wasserstoffatome sind wegen besserer Übersichtlichkeit weggelassen. Ausgewählte Bindungslängen [pm] und -winkel [°]: Sn–C1 223,1(2), Sn–C1' 220,8(2), Sn–N 258,5(2), Sn–N' 262,5(3); C1–Sn–C1' 98,16(9)°, C1–Sn–N 92,89(8), C1–Sn–N 73,54(8), C1–Sn–N' 94,9(1), C1'–Sn–N' 72,9(1), N–Sn–N' 160,5(1).

ge FcN-Gruppe C,N- η^2 -chelatgebunden am Zinnatom vorliegt. Dies befindet sich in Übereinstimmung mit früheren Befunden, wonach sowohl (FcN)₂SnCl₂ [6, 8] als auch (FcN)SnCl(Me)₂ [3] als zinnorganische Chelatkomplexe erwähnt bzw. beschrieben wurden.

Im Gegensatz hierzu sind **3** und **4** Organozinn(IV)-Derivate, in denen alle FcN-Liganden ausschließlich über Sn–C- σ -Bindungen (η^1) am vierwertigen Sn-Atom fixiert und somit Chelatstrukturen auszuschließen sind.

¹H-, ¹³C-NMR-Spektroskopie

Die bei Raumtemperatur aus den Lösungsspektren ermittelten (s. experimenteller Teil) ¹H-NMR- chemischen Verschiebungen der zinnorganischen Verbindungen (FcN)_nSnCl_{4-n} [n=1 (1), 2 (2), 3 (3), 4 (4)] bzw. (FcN)₂Sn (5) bestätigen die formelmäßigen Zusammensetzungen. Sie lassen aber erkennen, daß in den Lösungen von 2, 5 keine Sn \leftarrow N-Wechselwirkungen bei dieser Temperatur vorliegen, da für eine Chelatbindung die Aufspaltung des jeweiligen N(CH₃)₂-Protonensignales in zwei intensitätsgleiche Dubletts infolge der Nichtäquivalenz dieser Protonen typisch ist. Zu beobachten ist jedoch bei 2 bzw. 5 jeweils nur ein Singulett, zurückzuführen auf die Äquivalenz der Protonen der N(CH₃)₂-Gruppe des FcN-Liganden.

Dieser Befund scheint dafür zu sprechen, daß eine Pseudorotation unter Lösung der Sn \leftarrow N-Bindung (Koaleszenz) auftritt. Dies befindet sich in Übereinstimmung mit ¹H-NMR-chemischen Verschiebungen anderer zinn(II)-organischer Chelatkomplexe R₂Sn (R = C₆H₄ CH₂NMe₂-2 [13, 16], (C₁₀H₆NMe₂-8)-1 [13, 17] oder 2-Me₂NC₆H₄CH(SiMe₃) [12]), in denen erst bei einer bestimmten Koaleszenztemperatur (< 0 °C) diese Aufspaltung der N(CH₃)₂-Protonensignale in zwei Dubletts als Beleg für eine vorliegende Chelatstruktur erfolgt. Die gleiche Aussage trifft auch auf die ¹³C-NMR-chemischen Verschiebungen der C-Atome der N(CH₃)₂-Gruppierung der Verbindungen **2** und **5** zu.

Im Gegensatz hierzu ist bei $(FcN)SnCl_3(1)$ die für eine Chelatstruktur typische Aufspaltung sowohl der $N(CH_3)_2$ -Protonen (1,63; 2,05 ppm) als auch der Signale der C-Atome der $N(CH_3)_2$ -Gruppe (44,45 bzw. 48,12 ppm) in dessen Lösungsspektrum bei Raumtemperatur zu beobachten.

Die Signale der CH₂N-Protonen der FcN-Gruppe werden dagegen zwischen 2,67 bzw. 4,10 ppm gefunden und bilden ein A,B-Spinsystem. Die magnetische Nichtäquivalenz dieser CH₂-Protonen (d, ²J 12,6–13,2 Hz) ist dabei auf eine den 1,2(*X,Y*)-disubstituierten Ferrocenen innewohnende Asymmetrie und nicht auf die Ausbildung von Chelatstrukturen zurückzuführen [4]. Für die Protonen des unsubstituierten C₅H₅-Ringes der FcN-Gruppe in **1**–**5** wird erwartungsgemäß ein Singulett mit chemischen Verschiebungen zwischen 4,04 und 4,40 ppm gefunden, während die Protonensignale des disubstituierten C₅H₃-Ringsystems zwischen 3,95 bzw. 5,06 ppm beobachtet werden.

⁵⁷Fe-Mößbauer-Untersuchungen

An den Organozinn-Derivaten 1, 3–5 wurden temperaturabhängige ⁵⁷Fe-Mößbauer-Messungen bei Temperaturen von 78, 178, 295 K ausgeführt, deren Resultate in Tab. 2 ausgewiesen sind.

Für die Spektreninterpretation wurden die bei einer Meßtemperatur von 178 K erhaltenen Mößbauer-Spektren (Abb. 5) ausgewählt, da bei dieser Temperatur ein intervalenter partieller Elektronentransfer im jeweiligen FcN-Liganden (Ferrocen Fe^{II} \rightarrow Ferricinium Fe^{III}) bereits deutlich wird und außerdem die Spektrenstatistik, die – infolge ungünstiger Debye–Waller-Faktoren der untersuchten Organozinn-Verbindungen – mit steigender Meßtemperatur abnimmt, noch zu eindeutigen Anpassungen führt. Diese resultierenden Summenspektren lassen sich unterschiedlich mit zwei Dubletts (D1, D2) und einem Singulett (S), als auch mit nur zwei Dubletts wie folgt interpretieren.

Dublett D1 entspricht dem Fe^{II}-Atom im Ferrocengerüst der am jeweiligen Zinnatom gebundenen FcN-Gruppe, während Dublett D2 aufgrund seiner Spektrenparameter dem anteiligen Ferricinum-Ion (Fe^{III}) zuzuordnen ist. Das Singulett S repräsentiert einen schnellen intervalenten Elektronenübergang Fe^{II} – Fe^{III} (charge transfer), dessen Geschwindigkeitskonstante (k= 10^{-8} s) innerhalb des sogenannten "Mößbauerfensters" liegt und deshalb mößbauerspektroskopisch nicht aufgelöst wird. Das Auftreten eines solchen Singuletts S ist für die Existenz von M – N-Wechselwirkungen typisch [18] und bestätigt somit auch für **1** die röntgenstrukturanalytisch aufgefundene Chelatstruktur.

Die Zunahme dieses Umwandlungsgrades (UG) mit steigender Meßtemperatur wird am Beispiel dieser Verbindung 1 durch Abb. 6 verdeutlicht.

Tab. 2 ⁵⁷Fe-Mößbauer-Parameter der 1,2-(*N*,*N*-Dimethylaminomethyl)ferrocenyl-Derivate $(FcN)_n SnCl_{4-n} [n = 1(1), 3(3), 4(4)], (FcN)_2 Sn (5)$ bei Messtemperaturen von 78 K, 178 K und 295 K

78 K									
	UG (%)	Dublett D δ (mm · s ⁻¹)	$\frac{\varepsilon}{(\mathrm{mm}\cdot\mathrm{s}^{-1})}$	Γ (mm · s ⁻¹)	Dublett D 2 δ (mm · s ⁻¹)	\mathcal{E} (mm · s ⁻¹)	Γ (mm · s ⁻¹)	Singulett S δ (mm · s ⁻¹)	Γ (mm · s ⁻¹)
1 3 4 5	13(3) 19(4) 0 6(1)	0,54(6) 0,53(6) 0,53(3) 0,52(2)	2,44(1) 2,39(1) 2,38(7) 2,37(4)	0,31(2) 0,30(2) 0,31(14) 0,32(6)	0,25(3) 0,26(3) - 0,22(5)	0,44(6) 0,25(7) - 0,50(9)	0,20(0) 0,36(1) - 0,20(0)	0,15(6) - 0,36(1)	0,24(0) - - 0,54(0)
178 K									
1 3 4 5	20(6) 46(5) 10(2) 8(3)	0,42(1) 0,427(8) 0,50(4) 0,32(1)	2,08(2) 2,08(2) 2,38(1) 2,35(1)	0,26(2) 0.20(2) 0,32(1) 0,32(2)	$\begin{array}{c} 0,17(3) \\ 0,18(2) \\ 0.10(4) \\ 0,37(7) \end{array}$	0,44(4) 0,38(3) 0,47(7) 0,89(1)	0,20(0) 0,29(6) 0,20(0) 0,20(0)	0,15(3) - 0,35(4)	0,20(2) 0,21(1)
295 K									
1 3 4 5	54(6) 60(4) 18(4) 17(3)	$\begin{array}{c} 0,32(1) \\ 0.45(1) \\ 0,45(6) \\ 0,45(7) \end{array}$	2,31(2) 2.35(2) 2,36(1) 2,35(1)	0,25(6) 0,31(3) 0,24(2) 0,28(2)	$\begin{array}{c} 0,11(3) \\ 0.12(10) \\ 0.08(3) \\ 0,16(8) \end{array}$	$\begin{array}{c} 0,43(4) \\ 0.42(21) \\ 0,50(5) \\ 0,64(8) \end{array}$	0,28(6) 0,30(0) 0,22(7) 0,20(0)	0,49(5) _ 0,36(5)	0,30(0) 0,24(1)

 δ = Isomerieverschiebung (rel. zu α -Fe); ε = Quadrupolaufspaltung; Γ = Linienbreite; UG = Umwandlungsgrad

Mit abnehmender Zahl der am jeweiligen Metallatom zusätzlich gebundenen elektronenziehenden Liganden (Akzeptoren) verringert sich der Umwandlungsgrad ebenfalls [18]. Vergleicht man diesbezüglich **3** mit **4** (Tab. 2), in denen nach Röntgenstrukturanalysen keine Chelatstrukturen existieren (Abb. 2; 3), so wird dieser Effekt deutlich. Bei einem Vergleich von **1** mit **3** ist dagegen aber zu berücksichtigen, daß als Folge der chelatgebundenen FcN-Gruppe in **1** und einer damit möglichen partiellen Elektronenrückübertragung über den disubstituierten C₅H₃-Ring dieser FcN-Gruppierung eine teilweise Reduktion des Ferricinium-Ions (Fe^{III} \rightarrow Fe^{II}) auftritt. Der niedrige Umwandlungsgrad

1 (178 K)

4 (178 K)

Abb. 5 57 Fe-Mößbauer-Spektren von (FcN)SnCl₃ (1), (FcN)₃SnCl (3), (FcN)₄Sn (4) bei einerMeßtemperatur von 178 K.

von 4 ist dagegen eine Folge der symmetrischen Anordnung der vier FcN-Gruppen am tetraedrisch koordinierten Sn-Atom und fehlender Sn \leftarrow N-Wechselwirkungen.

Das bei einer Meßtemperatur von 178 K aufgenommene Spektrum des Stannylens **5** als einem Donormolekül mit Chelatstruktur (Abb. 4) wird mit Abb. 7 wiedergegeben, wobei der im Vergleich zum Chelatkomplex **1** geringere Umwandlungsgrad auf relativ schwa-

1a (78 K)

1b (178 K)

Abb. 6 57 Fe-Mößbauer-Spektrum von (FcN)SnCl₃ (1) bei Meßtemperaturen von 78 K (a), 178 K (b) und 295 K (c).

che Sn \leftarrow N-Bindungen im heterobimetallischen Stannylen **5** hinzudeuten scheint.

Cyclovoltammetrie

Die Organozinn-Derivate $(FcN)_n SnCl_{4-n}$ [n=1 (1), 2 (2), 3 (3), 4 (4)] bzw. $(FcN)_2 Sn$ (5) wurden in Dichlormethan als Lösungsmittel cyclovoltammetrisch (Dreielektrodentechnik, Luggin-Kapillare; Arbeitselektrode: Pt-

Abb. 7 57 Fe-Mößbauer-Spektrum von (FcN)₂Sn (5) bei einer Meßtemperatur von 178 K.

Scheibe, Gegenelektrode: Pt-Spirale; gesättigte Kalomelelektrode als Bezugselektrode) untersucht. Die aus den gemessenen Peakpotentialen ermittelten Elektrodenpotentiale E^o' werden – im Vergleich zu Dimethylaminomethylferrocen (FcNH) bzw. Ferrocen (FcH) – in Tab. 3 ausgewiesen.

Tab. 3 Formale Elektrodenpotentiale ($E^{\circ'}[V]$; berechnet aus den Peakpotentialen) bei der stufenweisen Oxidation von (FcN)nSnCl_{4-n} (n = 1 (1), 2 (2), 3 (3), 4 (4)) und (FcN)₂Sn (5). [Bezugssubstanzen: Dimethylaminomethylferrocen (FcNH), Ferrocen (FcH); Lösungsmittel CH₂Cl₂; Arbeitselektrode: Pt, Bezugselektrode: Hg₂Cl₂; Leitelektrolyt: [NBu₄] [PF₆], 0,2 mol·dm⁻³] bei 20 °C.

Komplex	$E^{0'}_{0/+}(V)$	$E^{0'}_{+/2+}(V)$	$E^{0'}_{2+/3+}(V)$	E ^{0'} 3+/4+(V)
1 2 3 4 5 FcNH FcH	$\begin{array}{r} +0,61\\ +0,41\\ +0,40\\ +0,41\\ +0,39\\ +0,38\\ +0,39\end{array}$	+0,55 +0,40 +0,41 +0,55	+0,52 +0,53	+0,67

So unterliegt 1 einer Ein-Elektronenoxidation. Dieser potentialkontrollierte Oxidationsvorgang (potentiostatische Coulometrie, Arbeitspotential Ew = +0.9 V) bedingt einen Farbumschlag der gelben Lösung von 1 nach Blau unter Bildung des Kations [FcNH]⁺, da das im Verlaufe des Meßvorganges gebildete Monokation [1]⁺ instabil ist. Demgegenüber verdeutlicht Abb. 8 das typische Voltammogramm von 2, sowohl in der cyclischen (Abb. 8a) als auch in der Differenz-Pulsvoltammetrie (Abb. 8b).

Abb. 8 Cyclisches (a) und Differential-Puls (b) Voltammogramm einer Lösung von **2** in CH₂Cl₂ ([NBu₄][PF₆]: 0,2 mol·dm⁻³; (FcN)₂SnCl₂ (**2**): 2,0·10⁻³ molùdm⁻³); Pt-Elektrode (Arbeitselektrode), Bezugselektrode (Kalomelelektrode), [v = 0,2 V·s⁻¹ (a); 0,004 V·s⁻¹ (b)].

Bei 2 sind zwei auftretende Oxidationsschritte charakteristisch. Die zweifache Ein-Elektronenoxidation bewirkt den Farbwechsel der gelben Lösung von 2 nach

Abb. 9 Cyclisches (a) und Differential-Puls (b) Voltammogramm einer Lösung von **3** in CH₂Cl₂ ([NBu₄][PF₆]: 0,2 mol·dm⁻³; (FcN)₃SnCl (**3**): 0,8·10⁻³ mol·dm⁻³); Pt-Elektrode (Arbeitselektrode), Bezugselektrode (Kalomelelektrode), [v = 0,2 V·s⁻¹ (a); 0,004 V·s⁻¹ (b)].

blaugrün ($\lambda = 640$ nm) unter Bildung des stabilen Dikations [2]²⁺. Das cyclovoltammetrische Verhalten von **3** verdeutlicht Abb. 9. Offensichtlich verläuft dessen Oxidation zuerst über zwei Ein-Elektronenschritte und einer darauf folgenden Ein-Elektronenoxidation. Ein vollständiger Drei-Elektronenprozeß wird offensichtlich durch eine Adsorption kurzlebiger Zwischenprodukte erschwert, zumal sich das entstehende Trikation [3]³⁺ als instabil erweist.

Abb. 10 Cyclisches (a) und Differential-Puls (b) Voltammogramm einer Lösung von **4** in CH₂Cl₂ ([NBu₄][PF₆]: 0,2 mol·dm⁻³; (FcN)₄Sn (**4**) : 0,5·10⁻³ molùdm⁻³): Pt-Elektrode (Arbeitselektrode), Bezugselektrode (Kalomelelektrode), [v = 0,2 V·s⁻¹ (a); 0,02 V·s⁻¹ (b)].

Bei der Oxidation von 4 sind – wie Abb. 10 verdeutlicht – zunächst ein Zwei-Elektronenschritt sowie zwei darauf folgende Ein-Elektronenprozesse zu beobachten.

Bei der potentiostatischen Coulometrie resultiert ein Verbrauch von insgesamt vier Elektronen pro Molekül 4 (Arbeitspotential Ew = +1,0 V). Damit verbunden ist wiederum eine charakteristische Farbänderung der gelborangenen Lösung von 4 nach Grün unter Ausbildung des mit Abb. 10a aufgezeigten cyclovoltammetrischen Verhaltens sowie der Existenz des gebildeten stabilen Tetrakations [4]⁴⁺.

Wie Abb. 11 verdeutlicht, zeigt das Stannylen **5** ein cyclovoltammetrisches Erscheinungsbild, das dem von **2** ähnlich ist und zwei typische Ein-Elektronenoxidationsschritte unter Bildung des Dikations $[5]^{2+}$ erkennen läßt.

Die cyclovoltammetrischen Untersuchungen von 1– 5 befinden sich in Übereinstimmung mit diesbezüglichen Literaturangaben. So werden z.B. bei Diferrocenyl-Derivaten des Platins, Zinks, Cobalts, Quecksilbers auch zwei Ein-Elektronenoxidationsschritte beobachtet

Abb. 11 Cyclisches (a) und Differential-Puls (b) Voltammogramm einer Lösung von **5** in CH₂Cl₂ ([NBu₄][PF₆]: 0,2 mol·dm⁻³; (FcN)₂Sn (**5**): 1,6·10⁻³ mol·dm⁻³); Pt-Elektrode (Arbeitselektrode), Bezugselektrode (Kalomelelektrode), [v = 0,2 V·s⁻¹ (a); 0,02 V·s⁻¹ (b)].

[19], wie sie bei 2 bzw. 5 ermittelt wurden. Andererseits wird das Auftreten von Ein-Elektronen-Prozessen im Falle von 3 und 4 sowohl bei Ferrocen-Derivaten mit nichtmetallischen Zentralatomen, z.B. bei Tri(ferrocenyl)-ethinyl-silan [20], Tri(ferrocenyl)phosphohydrazon [21], Tri(ferrocenyl)amidoethylamin [22], Tetra (ferrocenyl)silan [23] oder Tetra(ferrocenyl)borat [24] ebenso beschrieben wie bei Ferrocenyl-Derivaten des Titans, Hafniums oder Wolframs [19].

Die Autoren K. J., F. V., N. S., A. F., C. P. danken der Deutschen Forschungsgemeinschaft für die materielle Förderung dieser Arbeiten. P. Z. dankt der Universität Siena (Piano di Ateneo per la Ricera, 1999) für die finanzielle Unterstützung.

Beschreibung der Versuche

Alle durchgeführten Operationen wurden unter Argon als Schutzgas (Schlenk-Technik) und unter Verwendung luft- und feuchtigkeitsfreier (ketylierter) Lösungsmittel ausgeführt. [1,2-(*N*,*N*-Dimethylaminomethyl)ferrocenyl]-Lithium (FcN) Li wurde gemäß Literaturangaben präpariert [25]. Wasserfreies SnCl₂ und SnCl₄ standen als kommerzielle Produkte der Fa. ABCR GmbH & Co. KG zur Verfügung. Verwendete Geräte: NMR-Spektrometer Gemini XL-300 (300 MHz) der Fa. Varian; MS-Spektrometer AMD 402 der Fa. AMD Intectra (70 eV, Stoßionisation); Mößbauer-Spektrometer der Fa. Wissel (γ -Strahlenquelle: ⁵⁷Co-Präparat in Rh-Matrix, Quellstärke 0,9 Gbq). Die cyclovoltammetrischen Messungen erfolgten mittels der Dreielektrodentechnik (Arbeitselektrode: Pt-Scheibe, Gegenelektrode: Pt-Spirale, gesättigte Kalomelelektrode als Bezugselektrode) an einem Gerät des Typs BAS 100 A; die der potentiostatischen Coulometrie (Arbeitselektrode: Pt-Netz, Gegenelektrode: Quecksilber, gesättigte Kalomelelektrode als Bezugselektrode) unter Verwendung eines Potentiostaten des Typs AMEL 552 sowie eines Integrators des Typs AMEL 558 gemäß [26, 27].

Mößbauer-Spektroskopie

Die Geschwindigkeitskalibrierung des Spektrometers erfolgte mit α -Eisen. Alle Spektren wurden unter Annahme von Lorenzprofilen angefittet. Fitparameter: Isomerieverschiebung (δ), Quadrupolaufspaltung (ε), Linienbreite (Γ). Die Isomerieverschiebungen (s. Tab. 2) sind auf α -Eisen bezogen. Die Intensitäten der Teilspektren ergeben sich aus den Flächen unter den Teilspektren des rechnerisch angepaßten Spektrums. Bei der Annahme gleicher Debye–Waller-Faktoren einer Substanz [28] entsprechen die Flächenanteile am Gesamtspektrum dem Mengenteil der Teilphase in der untersuchten Verbindung.

Röntgenkristallstrukturanalysen

Kristalldaten sind der Tab. 1 zu entnehmen.

Datensammlung und -reduktion: Kristalle wurde in Inertöl auf Glasfäden montiert und in den Kaltgasstrom des Diffraktometers gebracht (Bruker AXS Smart CCD System mit LT-2 Tieftemperaturzusatz). Es wurde mit monochromatisierter Mo- K_{α} -Strahlung gemessen (Volle Hemisphäre im reziproken Raum, ω -scans, 3 Frame sets, 0.3°). Eine Absorptionskorrektur wurde mit der multi scan Methode (SADABS) vorgenommen. Strukturlösung und -verfeinerung: Die Strukturen wurden mit Direkten Methoden gelöst und anisotrop auf F^2 verfeinert (Programm SHELXL-97, G. M. Sheldrick, Universität Göttingen [29]). Wasserstoffatome wurden mit einem Riding-Modell bzw. mit starren Methylgruppen berücksichtigt.

Vollständige Einzelheiten der Strukturbestimmungen (außer Strukturfaktoren) wurden beim Cambridge Crystallographic Data Centre unter den Nummern CCDC 139971 (1), 139972 (3), 139973 (4) und 139974 (5) deponiert. Exemplare können kostenlos angefordert werden vom Director, CCDC, 12 Union Rd., GB-Cambridge CB2 1EZ (Telefax: Int.+ 1223/336033; E-mail: deposit@ccdc.cam.ac.uk).

Darstellung der [1,2-(N,N-Dimethylaminomethyl)ferrocenyl]Zinn(IV)-Derivate (FcN)_nSnCl_{4-n} [n = 1 (1), 2 (2 [6]),3(3), 4 (4)]

Zur Synthese von 1-4 werden bei einer Temperatur von -78 °C die jeweiligen Reaktionslösungen durch Zutropfen von je 0,96 g (0,43 ml; 3,69 mmol) SnCl₄ in 200 ml Diethylether unter Rühren bereitet. Anschließend fügt man bei gleicher Temperatur die berechneten Mengen (FcN)Li [0,920 g = 3,70 mmol (1); 1,84 g = 7,40 mmol (2); 2,76 g = 11,10 mmol (3); 3,68 g = 14,80 mmol (4)] hinzu, läßt langsam auf Raumtemperatur erwärmen, rührt weitere 72 Stunden lang, entfernt das Lösungsmittel vollständig im Ölpumpenvakuum und fügt zu den verbleibenden festen bzw. viskosen Rückständen 150 ml *n*-Pentan hinzu. Nach Stehen über Nacht werden die abgeschiedenen orangegelben Feststoffe filtriert und mit dem gleichen Pentan bis zum farblosen Ablauf extrahiert. Aus den jeweiligen Extrakten scheiden sich 1-4 beim Stehen im Kühlschrank in kristalliner Form ab.

1: Ausb. 0,91 g (52%). *Fp*. 137 °C. – MS: m/z (%) = 467 (100, M⁺), 423 (45, M–NMe₂⁺), 225 (13, M–FcN⁺), 396 (15, FcNSnCl⁺), 242 (70, FcN⁺); Kristallstruktur: s. Tab. 1, Abb.1. – ¹H-NMR (C₆D₆), 25 °C): δ /ppm = 1,63; 2,05 (s, N(CH₃)₂); 2,30 (d, ²J 13,0 CH₂N), 3,45 (d, ²J 12,9 CH₂N); 4,16 (s, C₅H₅); 3,93, 4,02, 4,39 (C₅H₃). – ¹³C-NMR (C₆D₆, 25 °C): δ /ppm = 44,45; 48,12 (N(CH₃)₂); 50,86 (CH₂N); 66,02 (C₅H₅); 70,75, 73,49, 75,14 (C₅H₃); 91,95 (quarternär, C₅H₃Sn). C₁₃H₁₆NFeSnCl₃ (467,19) Por: C 23 45 N 2 00 Cl 22 77 Sp 25 41

Ber.:C 33,42H 3,45N 2,99Cl 22,77Sn 25,41Gef.:C 33,27H 3,71N 2,79Cl 22,50Sn 24,88.

2: Ausb. 0,85 g (34%). *Fp.* 218 °C. – MS: m/z (%) = 674 (95, M⁺), 630 (15, M–NMe₂⁺), 432 (18, M–FcN⁺), 396 (7, FcNSn–Cl⁺), 604 (6, (FcN)₂Sn⁺), 362 (15, FcNSn⁺), 242 (40, FcN⁺). – ¹H-NMR (CDCl₃, 25 °C): δ /ppm = 2,02 (s, N(CH₃)₂); 2,67 (d, ²J 13,3 CH₂N), 4,10 (d, ²J 13,2 CH₂N); 4,40 (s, C₅H₅); 4,45 (1H), 4,20 (2H) C₅H₃. – ¹³C-NMR (C₆D₆, 20 °C): δ /ppm = 45,10 (N(CH₃)₂), 58,2 (CH₂N); 70,5 (C₅H₅); 71,2 , 68,5, 68,9, 73,1 (C₅H₃); 90,0 (quarternär, C₅H₃Sn). C₂₆H₃₂N₂Fe₂SnCl₂ (673,84)

Ber.:C 46,34H 4,78N 4,15Cl 10,52Sn 17,62Gef.:C 46,20H 4,51N 4,30Cl 10,26Sn 17,18.

3: Ausb. 1,21 g (37%). *Fp.* 145 °C. – MS: m/z (%) = 881 (40, M⁺), 837 (20, M–NMe₂⁺), 638 (8, M–FcN⁺), 396 (12, FcNSn–Cl⁺), 604 (9, (FcN)₂Sn⁺), 362 (60, FcNSn⁺), 242 (100, FcN⁺). Kristallstruktur: s. Tab.1, Abb. 2. – ¹H-NMR (C₆D₆, 25 °C): δ /ppm = 2,10 (s, N(CH₃)₂); 2,96 (d, ²J 12,7 CH₂N), 3,62 (d, ²J 12,6 CH₂N); 4,35 (s, C₅H₅); 5,06, 4,45, 4,42 (C₅H₃). – ¹³C-NMR (C₆D₆, 25 °C): δ /ppm = 45,97 (N(CH₃)₂); 60,38 (CH₂N); 69,98 (C₅H₅); 77,95, 73,95, 70,28 (C₅H₃); 89,74 (quarternär, C₅H₃Sn).

C₃₉H₄₈N₃Fe₃SnCl (880,49)

Ber.: C 53,20 H 5,49 N 4,77 Cl 4,03 Sn 13,48 Gef.: C 52,86 H 5,18 N 4,39 Cl 4,15 Sn 12,93.

4: Ausb. 1,25 g (32%). *Fp*. 195 °C. – MS: *m/z* (%) = 1087 (25, M⁺), 1042 (5, M–NMe₂⁺), 844 (4, M–FcN⁺), 603 (9, (FcN)₂Sn⁺), 363 (40, FcNSnH₂⁺, mögliche H-Abstraktion an FcNSn⁺), 242 (100, FcN⁺). Kristallstruktur: s. Tab. 1, Abb. 3. – ¹H-NMR (C₆D₆, 20 °C): δ /ppm = 2,35 (s, N(CH₃)₂); 2,96 (d, ²*J* 12,6, CH₂N), 3,35 (d, ²*J* 13,0, CH₂N); 4,21 (s, C₅H₅); 4,68 (m, C₅H₃). – ¹³C-NMR (C₆D₆, 20 °C): δ /ppm = 46,1 (N(CH₃)₂); 60,0 (CH₂N); 69,35 (C₅H₅); 72,80, 69,20, 71,80, 72,2 (C₅H₃); 89,5 (quarternär, C₅H₃Sn). C₅₂H₆₄N₄Fe₄Sn (1087,20) Ber.: C 57,45 H 5,93 N 5,15 Sn 10,92 Gef.: C 56,98 H 6,05 N 4,89 Sn 12,95.

Darstellung von Bis[1,2-(N,N-dimethylaminomethyl)ferrocenyl]Zinn(II), (FcN)₂Sn (**5**)

Man löst bei einer Temperatur von -78 °C unter Rühren 3 g (15,82 mmol) wasserfreies SnCl₂ in 200 ml Tetrahydrofuran, versetzt bei dieser Temperatur unter Rühren mit 7,88 g (31,65 mmol) (FcN)Li und läßt die Reaktionslösung nach zwei Stunden unter Rühren langsam auf Raumtemperatur erwär-

men. Dabei entsteht eine klare, braungelbe Lösung. Von derselben wird im Ölpumpenvakuum das Lösungsmittel vollständig entfernt, der verbleibende Rückstand mit 150 ml *n*-Pentan versetzt und über Nacht bis zur Verfestigung des Rückstandes stehen gelassen. Danach wird filtriert und mit dem gleichen Pentan der braungelbe Feststoff bis zum farblosen Ablauf extrahiert. **5** scheidet sich in Form gelbroter Prismen ab.

5: Ausb. 2,18 g (43,5%). *Fp*. 115 °C. –MS: m/z (%) = 603 (10, M⁺), 559 (5, M–NMe₂⁺), 361 (15, M–FcN⁺), 242 (90, FcN⁺). Kristallstruktur: s. Tab. 1, Abb. 4. – ¹H-NMR (C₆D₆, 25 °C): δ /ppm = 2,18 (s, N(CH₃)₂); 2,73 (d, ²*J* 12,9, CH₂N), 3,90 (d, ²*J* 13,0, CH₂N); 4,04 (s, C₅H₅); 4,22, 4,20, 3,95 (C₅H₃). – ¹³C-NMR (C₆D₆, 25 °C): δ /ppm = 46,37 (N(CH₃)₂); 62,16 (CH₂N); 69,0 (C₅H₅); 74,46, 69,24, 68,39 (C₅H₃); 89,74 (quarternär, C₅H₃Sn).

 $C_{26}H_{32}N_2Fe_2Sn$ (602,93)

Ber.: ²⁰C 51,79 H 5,35 N 4,65 Sn 19,69

Gef.: C 51,29 H 5,42 N 4,30 Sn 19,12.

Literatur

- [1] W. Grahlert, K.-H. Thiele, Z. anorg. allg. Chem. **1971**, *383*, 144
- [2] K.-H. Thiele, Pure Appl. Chem. **1972**, *30*, 575
- [3] S. Hoppe, H. Weichmann, K. Jurkschat, C. Schneider-Koglin, M. Dräger, J. Organomet. Chem. 1995, 505, 63
- [4] J. Azizian, R. M. G. Roberts, J. Silver, J. Organomet. Chem. 1986, 303, 397
- [5] C. Krüger, K.-H. Thiele, M. Dargatz, Z. anorg. allg. Chem. 1989, 569, 97
- [6] C. Krüger, Dissertation, TH "Carl Schorlemmer" Leuna-Merseburg, Fakultät für Naturwissenschaften 1988
- [7] D. R. Morris, B. W. Rockett, J. Organomet. Chem. 1972, 40, C21
- [8] K. Jurkschat, C. Krüger; persönliche Mitteilung, Publikation in Vorbereitung
- [9] E. Hecht, Z. anorg. allg. Chem., 2000, 626, 759
- [10] H. Grützmacher, H. Pritzkow, F. T. Edelmann, Organometallics 1991, 10, 23
- [11] D. E. Goldberg, P. D. Hitchcock, M. F. Lappert, K. M. Thomas, A. J. Thorne, T. Fjeldberg, A. Haaland, B. E. R. Schilling, J. Chem. Soc., Dalton Trans. **1986**, 2387
- [12] J. T. B. H. Jastrzebski, P. van der Schaaf, J. Boersma, G. van Koten, New J. Chem. 1991, 15, 301
- [13] J. T. B. H. Jastrzebski, G. van Koten, Adv. Organomet. Chem. 1993, 35, 241 und dort zitierte Literatur
- [14] K. Jurkschat, C. Krüger, J. Meunier-Piret, Main Group Met. Chem. 1992, 15, 61
- [15] G. Innorta, F. Scagnolari, A. Modelli, S. Torroni, A. Foffani, J. Organomet. Chem. 1983, 241, 375
- [16] G. van Koten, J. T. B. H. Jastrzebski, J. G. Noltes, W. M. G.
 F. Pontenagel, J. Kroon, A. L. Spek, J. Am. Chem. Soc. 1978, 100, 5021
- [17] J. T. B. H. Jastrzebski, P. van der Schaaf, J. Boersma, G. van Koten, D. Heijdenrijk, K. Goubitz, D. A. J. de Ridder, J. Organomet. Chem. **1989**, *367*, 55
- [18] C. Pietzsch, A. Kirsten, K. Jacob, F. T. Edelmann, Z. Phys. Chem. **1998**, 205, 271
- [19] P. Zanello, in: Ferrocenes, A. Togni, T. Hayashi, (eds.). VCH Weinheim 1995, Chapt. 7 und dort zitierte Literatur
- [20] N. W. Duffy, B. H. Robinson, J. Simpson, J. Organomet. Chem. 1999, 573, 36

- [21] B. Delavaux-Nicot, R. Mathieu, D. de Montauzon, G. Lavigne, J.-P. Majoral, Inorg. Chem. 1994, 33, 434
- [22] P. D. Beer, Z. Chen, A. J. Gouldon, A. Graydon, S. E. Stokes, T. Wear, J. Chem. Soc., Chem. Commun. 1993, 1834
- [23] M. J. MacLachlan, A. J. lough, W. E. Geiger, I. Manners, Organometallics 1998, 17, 1873
- [24] D. O. Cowan, P. Shu, F. L. Hedberg, M. Rossi, T. J. Kinstenmacher, J. Am. Chem. Soc. 1979, 101, 1304
- [25] M. D. Rausch, G. A. Moser, C. F. Maede, J. Organomet. Chem. 1973, 51, 1
- [26] P. Zanello, F. Laschi, M. Fontani, C. Mealli, A. Ienco, K. Tang, X. Jin, L. Li, J. Chem. Soc., Dalton Trans. 1999, 965
- [27] A. Togni, M. Hobi, G. Rihs, G. Rist, A. Albinati, P. Zanello, D. Zech, H. Keller, Organometallics **1994**, *13*, 1224
- [28] V. K. Goldanskii, R. Herber, (eds.): Chemical Application of Mößbauer spectroscopy, Academic Press New York, N.

Y. 1968, p. 29

[29] G. M. Sheldrick, SHELXL-97. A program for crystal structure refinement, Universität Göttingen 1997

Korrespondenzanschrift:

Prof. Dr. Klaus Jacob

- Fachbereich Chemie
- Institut für Anorganische Chemie
- Martin-Luther-Universität Halle-Wittenberg
- Standort Merseburg

Geusaer Straße

D-06217 Merseburg

Fax: Internat. code (0) 3461 46 2002 e-Mail: jacob@chemie.uni-halle.de

e-Mail: jacob@cnemie.uni-nalie.de